PRELIMINARY DATA SHEET

# MOS INTEGRATED CIRCUIT μ**PD44164082, 44164182, 44164362**

# 18M-BIT DDRII SRAM 2-WORD BURST OPERATION

#### Description

The  $\mu$ PD44164082 is a 2,097,152-word by 8-bit, the  $\mu$ PD44164182 is a 1,048,576-word by 18-bit and the  $\mu$ PD44164362 is a 524,288-word by 36-bit synchronous double data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.

The  $\mu$ PD44164082,  $\mu$ PD44164182 and  $\mu$ PD44164362 integrates unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and /K) are latched on the positive edge of K and /K.

These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

These products are packaged in 165-pin PLASTIC FBGA.

#### Features

- $\bullet$  1.8  $\pm$  0.1 V power supply and HSTL I/O
- DLL circuitry for wide output data valid window and future frequency scaling
- · Pipelined double data rate operation
- Common data input/output bus
- Two-tick burst for low DDR transaction size
- Two input clocks (K and /K) for precise DDR timing at clock rising edges only
- Two output clocks (C and /C) for precise flight time and clock skew matching-clock and data delivered together to receiving device
- Internally self-timed write control
- Clock-stop capability with μs restart
- User programmable impedance output
- Fast clock cycle time : 4.0 ns (250 MHz), 5.0 ns (200 MHz), 6.0 ns (167 MHz)
- Simple control logic for easy depth expansion
- JTAG boundary scan

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Document No. M15821EJ4V0DS00 (4th edition) Date Published June 2003 NS CP(K) Printed in Japan The mark **★** shows major revised points.

# **Ordering Information**

| Part number           | Cycle | Clock     | Organization   | Core Supply | I/O       | Package         |
|-----------------------|-------|-----------|----------------|-------------|-----------|-----------------|
|                       | Time  | Frequency | (word x bit)   | Voltage     | Interface |                 |
|                       | ns    | MHz       |                | V           |           |                 |
| μPD44164082F5-E40-EQ1 | 4.0   | 250       | 2 M x 8-bit    | 1.8 ± 0.1   | HSTL      | 165-pin PLASTIC |
| μPD44164082F5-E50-EQ1 | 5.0   | 200       |                |             |           | FBGA (13 x 15)  |
| μPD44164082F5-E60-EQ1 | 6.0   | 167       |                |             |           |                 |
| μPD44164182F5-E40-EQ1 | 4.0   | 250       | 1 M x 18-bit   |             |           |                 |
| μPD44164182F5-E50-EQ1 | 5.0   | 200       |                |             |           |                 |
| μPD44164182F5-E60-EQ1 | 6.0   | 167       |                |             |           |                 |
| μPD44164362F5-E40-EQ1 | 4.0   | 250       | 512 K x 36-bit |             |           |                 |
| μPD44164362F5-E50-EQ1 | 5.0   | 200       |                |             |           |                 |
| μPD44164362F5-E60-EQ1 | 6.0   | 167       |                |             |           |                 |



# **Pin Configurations**

/ $\times$ ×× indicates active low signal.

# 165-pin PLASTIC FBGA (13 x 15)

(Top View) [μPD44164082F5-EQ1]

| _ | 1    | 2    | 3    | 4     | 5    | 6   | 7    | 8    | 9    | 10   | 11  |
|---|------|------|------|-------|------|-----|------|------|------|------|-----|
| Α | /CQ  | Vss  | A    | R, /W | /NW1 | /K  | NC   | /LD  | A    | Vss  | CQ  |
| в | NC   | NC   | NC   | Α     | NC   | к   | /NW0 | Α    | NC   | NC   | DQ3 |
| С | NC   | NC   | NC   | Vss   | Α    | Α   | Α    | Vss  | NC   | NC   | NC  |
| D | NC   | NC   | NC   | Vss   | Vss  | Vss | Vss  | Vss  | NC   | NC   | NC  |
| Е | NC   | NC   | DQ4  | VDDQ  | Vss  | Vss | Vss  | VDDQ | NC   | NC   | DQ2 |
| F | NC   | NC   | NC   | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | NC  |
| G | NC   | NC   | DQ5  | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | NC  |
| н | /DLL | VREF | VDDQ | VDDQ  | VDD  | Vss | VDD  | VDDQ | VDDQ | VREF | ZQ  |
| J | NC   | NC   | NC   | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | DQ1  | NC  |
| к | NC   | NC   | NC   | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | NC  |
| L | NC   | DQ6  | NC   | VDDQ  | Vss  | Vss | Vss  | VDDQ | NC   | NC   | DQ0 |
| м | NC   | NC   | NC   | Vss   | Vss  | Vss | Vss  | Vss  | NC   | NC   | NC  |
| Ν | NC   | NC   | NC   | Vss   | Α    | Α   | Α    | Vss  | NC   | NC   | NC  |
| Ρ | NC   | NC   | DQ7  | Α     | Α    | С   | Α    | Α    | NC   | NC   | NC  |
| R | TDO  | тск  | Α    | Α     | Α    | /C  | Α    | Α    | Α    | TMS  | TDI |

| A          | : Address inputs            | TMS  | : IEEE 1149.1 Test input     |
|------------|-----------------------------|------|------------------------------|
| DQ0 to DQ7 | : Data inputs / outputs     | TDI  | : IEEE 1149.1 Test input     |
| /LD        | : Synchronous load          | TCK  | : IEEE 1149.1 Clock input    |
| R, /W      | : Read Write input          | TDO  | : IEEE 1149.1 Test output    |
| /NW0, /NW1 | : Nibble Write data select  | VREF | : HSTL input reference input |
| K, /K      | : Input clock               | Vdd  | : Power Supply               |
| C, /C      | : Output clock              | VddQ | : Power Supply               |
| CQ, /CQ    | : Echo clock                | Vss  | : Ground                     |
| ZQ         | : Output impedance matching | NC   | : No connection              |
| /DLL       | : DLL disable               |      |                              |

Remark Refer to Package Drawing for the index mark.

# 165-pin PLASTIC FBGA (13 x 15) (Top View) [μΡD44164182F5-EQ1]

| - | 1    | 2    | 3    | 4     | 5    | 6   | 7    | 8    | 9    | 10   | 11  |
|---|------|------|------|-------|------|-----|------|------|------|------|-----|
| Α | /CQ  | Vss  | А    | R, /W | /BW1 | /K  | NC   | /LD  | Α    | Vss  | CQ  |
| в | NC   | DQ9  | NC   | A     | NC   | к   | /BW0 | Α    | NC   | NC   | DQ8 |
| с | NC   | NC   | NC   | Vss   | Α    | A0  | Α    | Vss  | NC   | DQ7  | NC  |
| D | NC   | NC   | DQ10 | Vss   | Vss  | Vss | Vss  | Vss  | NC   | NC   | NC  |
| Е | NC   | NC   | DQ11 | VDDQ  | Vss  | Vss | Vss  | VDDQ | NC   | NC   | DQ6 |
| F | NC   | DQ12 | NC   | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | DQ5 |
| G | NC   | NC   | DQ13 | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | NC  |
| н | /DLL | VREF | VDDQ | VDDQ  | VDD  | Vss | VDD  | VDDQ | VDDQ | VREF | ZQ  |
| J | NC   | NC   | NC   | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | DQ4  | NC  |
| к | NC   | NC   | DQ14 | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | DQ3 |
| L | NC   | DQ15 | NC   | VDDQ  | Vss  | Vss | Vss  | VDDQ | NC   | NC   | DQ2 |
| м | NC   | NC   | NC   | Vss   | Vss  | Vss | Vss  | Vss  | NC   | DQ1  | NC  |
| N | NC   | NC   | DQ16 | Vss   | Α    | Α   | Α    | Vss  | NC   | NC   | NC  |
| Ρ | NC   | NC   | DQ17 | Α     | Α    | С   | Α    | Α    | NC   | NC   | DQ0 |
| R | TDO  | тск  | Α    | Α     | Α    | /C  | Α    | Α    | Α    | TMS  | TDI |

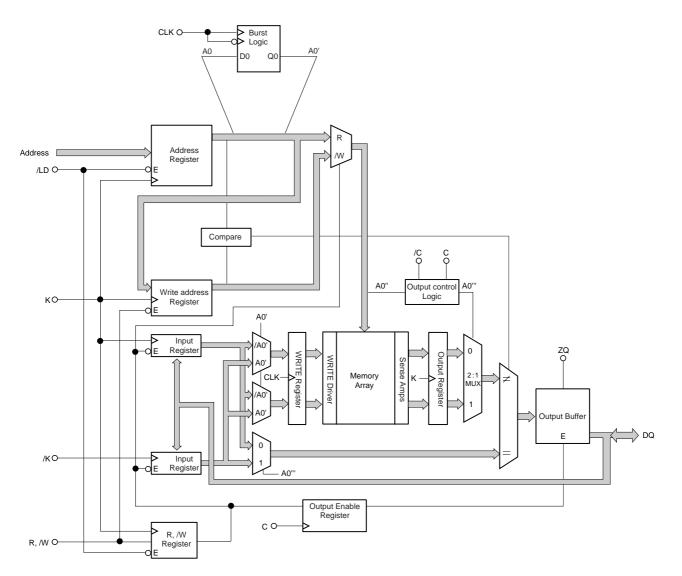
| A0, A       | : Address inputs            | TMS  | : IEEE 1149.1 Test input     |
|-------------|-----------------------------|------|------------------------------|
| DQ0 to DQ17 | : Data inputs / outputs     | TDI  | : IEEE 1149.1 Test input     |
| /LD         | : Synchronous load          | TCK  | : IEEE 1149.1 Clock input    |
| R, /W       | : Read Write input          | TDO  | : IEEE 1149.1 Test output    |
| /BW0, /BW1  | : Byte Write data select    | VREF | : HSTL input reference input |
| K, /K       | : Input clock               | Vdd  | : Power Supply               |
| C, /C       | : Output clock              | VddQ | : Power Supply               |
| CQ, /CQ     | : Echo clock                | Vss  | : Ground                     |
| ZQ          | : Output impedance matching | NC   | : No connection              |
| /DLL        | : DLL disable               |      |                              |

Remark Refer to Package Drawing for the index mark.

# 165-pin PLASTIC FBGA (13 x 15) (Top View) [μΡD44164362F5-EQ1]

|   | 1    | 2    | 3    | 4     | 5    | 6   | 7    | 8    | 9    | 10   | 11   |
|---|------|------|------|-------|------|-----|------|------|------|------|------|
| Α | /CQ  | Vss  | NC   | R, /W | /BW2 | /K  | /BW1 | /LD  | Α    | Vss  | CQ   |
| в | NC   | DQ27 | DQ18 | A     | /BW3 | к   | /BW0 | Α    | NC   | NC   | DQ8  |
| с | NC   | NC   | DQ28 | Vss   | Α    | A0  | Α    | Vss  | NC   | DQ17 | DQ7  |
| D | NC   | DQ29 | DQ19 | Vss   | Vss  | Vss | Vss  | Vss  | NC   | NC   | DQ16 |
| Е | NC   | NC   | DQ20 | VDDQ  | Vss  | Vss | Vss  | VDDQ | NC   | DQ15 | DQ6  |
| F | NC   | DQ30 | DQ21 | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | DQ5  |
| G | NC   | DQ31 | DQ22 | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | NC   | DQ14 |
| н | /DLL | VREF | VDDQ | VDDQ  | VDD  | Vss | VDD  | VDDQ | VDDQ | VREF | ZQ   |
| J | NC   | NC   | DQ32 | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | DQ13 | DQ4  |
| к | NC   | NC   | DQ23 | VDDQ  | VDD  | Vss | VDD  | VDDQ | NC   | DQ12 | DQ3  |
| L | NC   | DQ33 | DQ24 | VDDQ  | Vss  | Vss | Vss  | VDDQ | NC   | NC   | DQ2  |
| м | NC   | NC   | DQ34 | Vss   | Vss  | Vss | Vss  | Vss  | NC   | DQ11 | DQ1  |
| N | NC   | DQ35 | DQ25 | Vss   | Α    | Α   | Α    | Vss  | NC   | NC   | DQ10 |
| Ρ | NC   | NC   | DQ26 | Α     | Α    | С   | Α    | Α    | NC   | DQ9  | DQ0  |
| R | TDO  | тск  | Α    | Α     | Α    | /C  | Α    | Α    | Α    | TMS  | TDI  |

| A0, A        | : Address inputs            | TMS  | : IEEE 1149.1 Test input     |
|--------------|-----------------------------|------|------------------------------|
| DQ0 to DQ35  | : Data inputs / outputs     | TDI  | : IEEE 1149.1 Test input     |
| /LD          | : Synchronous load          | TCK  | : IEEE 1149.1 Clock input    |
| R, /W        | : Read Write input          | TDO  | : IEEE 1149.1 Test output    |
| /BW0 to /BW3 | : Byte Write data select    | VREF | : HSTL input reference input |
| K, /K        | : Input clock               | Vdd  | : Power Supply               |
| C, /C        | : Output clock              | VddQ | : Power Supply               |
| CQ, /CQ      | : Echo clock                | Vss  | : Ground                     |
| ZQ           | : Output impedance matching | NC   | : No connection              |
| /DLL         | : DLL disable               |      |                              |


**Remark** Refer to **Package Drawing** for the index mark.

#### **Pin Identification**

| Symbol       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0<br>A      | Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K. Balls 3A, 10A, and 2A are reserved for the next higher-order address inputs on future devices. All transactions operate on a burst of two words (one clock period of bus activity). A0 is used as the lowest order address bit permitting a random starting address within the burst operation. These inputs are ignored when device is deselected.                                                       |
| DQ0 to DQxx  | Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and /K. Output data is synchronized to the respective C and /C data clocks or to K and /K if C and /C are tied to HIGH. x8 device uses DQ0 to DQ7. x18 device uses DQ0 to DQ17. x36 device uses DQ0 to DQ35.                                                                                                                                                                                                                             |
| /LD          | Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition includes address and read/write direction. All transactions operate on a burst of 2 data (one clock period of bus activity).                                                                                                                                                                                                                                                                                                  |
| R, /W        | Synchronous Read/Write Input: When /LD is LOW, this input designates the access type (READ when R, /W is HIGH, WRITE when R, /W is LOW) for the loaded address. R, /W must meet the setup and hold times around the rising edge of K.                                                                                                                                                                                                                                                                                                 |
| /BWx<br>/NWx | Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble to be registered and written during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations for signal to data relationships.                                                                                                                                                                   |
| K, /K        | Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.                                                                                                                                                                                                                            |
| C, /C        | Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of /C is used as the output timing reference for first output data. The rising edge of C is used as the output reference for second output data. Ideally, /C is 180 degrees out of phase with C. C and /C may be tied HIGH to force the use of K and /K as the output reference clocks instead of having to provide C and /C clocks. If tied HIGH, C and /C must remain HIGH and not be toggled during device operation. |
| CQ, /CQ      | Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q tristates.                                                                                                                                                                                                                                                                                                          |
| ZQ           | Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus impedance. DQ and CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to ground. This pin cannot be connected directly to GND or left unconnected.                                                                                                                                                                                                                                                   |
| /DLL         | DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TMS          | IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is not                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TDI<br>TCK   | used in the circuit.<br>IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to Vss if the JTAG function is not used in the                                                                                                                                                                                                                                                                                                                                                                                                |
| TDO          | circuit.<br>IEEE 1149.1 Test Output: 1.8V I/O level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VREF         | HSTL Input Reference Voltage: Nominally VbbQ/2. Provides a reference voltage for the input buffers.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VDD          | Power Supply: 1.8V nominal. See DC Characteristics and Operating Conditions for range.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VddQ         | Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC Characteristics and Operating Conditions for range.                                                                                                                                                                                                                                                                                                                                                                                     |
| Vss          | Power Supply: Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NC           | No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic level applied to the ball sites. These signals may be connected to ground to improve package heat dissipation.                                                                                                                                                                                                                                                                                                                      |

★

# **Block Diagram**



**Burst Sequence** 

Linear Burst Sequence Table

# [μPD44164182, μPD44164362]

|                            | A0 | A0 |
|----------------------------|----|----|
| External Address           | 0  | 1  |
| 1st Internal Burst Address | 1  | 0  |

#### **Truth Table**

| Operation                             | /LD | R, /W | CLK     | DQ                                               |  |  |  |
|---------------------------------------|-----|-------|---------|--------------------------------------------------|--|--|--|
| WRITE cycle                           | L   | L     | $L\toH$ | Data in                                          |  |  |  |
| Load address, input write data on two |     |       |         | Input data D(A1) D(A2)                           |  |  |  |
| consecutive K and /K rising edge      |     |       |         | Input clock K(t+1) ↑ /K(t+1) ↑                   |  |  |  |
| READ cycle                            | L   | Н     | $L\toH$ | Data out                                         |  |  |  |
| Load address, read data on two        |     |       |         | Output data Q(A1) Q(A2)                          |  |  |  |
| consecutive C and /C rising edge      |     |       |         | Output clock/C(t+1) $\uparrow$ C(t+2) $\uparrow$ |  |  |  |
| NOP (No operation)                    | Н   | Х     | $L\toH$ | High-Z                                           |  |  |  |
| STANDBY(Clock stopped)                | Х   | х     | Stopped | Previous state                                   |  |  |  |

**Remarks 1.** H : High level, L : Low level,  $\times$  : don't care,  $\uparrow$  : rising edge.

- 2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges except if C and /C are HIGH then Data outputs are delivered at K and /K rising edges.
- All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of K. All control inputs are registered during the rising edge of K.
- 4. This device contains circuitry that will ensure the outputs will be in high impedance during power-up.
- 5. Refer to state diagram and timing diagrams for clarification.
- **6.** A1 refers to the address input during a WRITE or READ cycle. A2 refers to the next internal burst address in accordance with the linear burst sequence.
- **7.** It is recommended that K = /K = C = /C when clock is stopped. This is not essential but permits most rapid restart by overcoming transmission line charging symmetrically.

#### **Byte Write Operation**

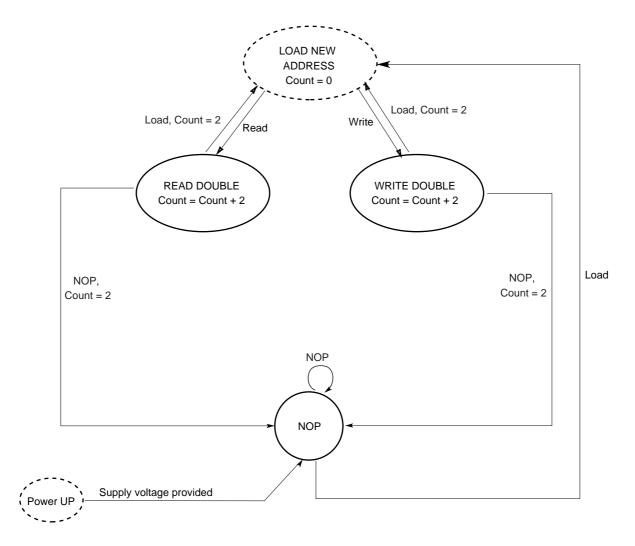
#### [µPD44164082]

| Operation        | К       | /K      | /NW0 | /NW1 |
|------------------|---------|---------|------|------|
| Write DQ0 to DQ7 | $L\toH$ | -       | 0    | 0    |
|                  | _       | $L\toH$ | 0    | 0    |
| Write DQ0 to DQ3 | $L\toH$ | -       | 0    | 1    |
|                  | _       | $L\toH$ | 0    | 1    |
| Write DQ4 to DQ7 | $L\toH$ |         | 1    | 0    |
|                  | _       | $L\toH$ | 1    | 0    |
| Write nothing    | $L\toH$ | _       | 1    | 1    |
|                  | _       | $L\toH$ | 1    | 1    |

**Remark** H : High level, L : Low level,  $\rightarrow$  : rising edge.

#### [µPD44164182]

| Operation         | К       | /K      | /BW0 | /BW1 |
|-------------------|---------|---------|------|------|
| Write DQ0 to DQ17 | $L\toH$ | -       | 0    | 0    |
|                   | -       | $L\toH$ | 0    | 0    |
| Write DQ0 to DQ8  | $L\toH$ | _       | 0    | 1    |
|                   | Ι       | $L\toH$ | 0    | 1    |
| Write DQ9 to DQ17 | $L\toH$ | _       | 1    | 0    |
|                   | Ι       | $L\toH$ | 1    | 0    |
| Write nothing     | $L\toH$ | _       | 1    | 1    |
|                   | _       | $L\toH$ | 1    | 1    |


**Remark** H : High level, L : Low level,  $\rightarrow$  : rising edge.

#### [µPD44164362]

| Operation          | К       | /K      | /BW0 | /BW1 | /BW2 | /BW3 |
|--------------------|---------|---------|------|------|------|------|
| Write DQ0 to DQ35  | $L\toH$ | _       | 0    | 0    | 0    | 0    |
|                    | Ι       | $L\toH$ | 0    | 0    | 0    | 0    |
| Write DQ0 to DQ8   | $L\toH$ | -       | 0    | 1    | 1    | 1    |
|                    | Ι       | $L\toH$ | 0    | 1    | 1    | 1    |
| Write DQ9 to DQ17  | $L\toH$ | -       | 1    | 0    | 1    | 1    |
|                    | -       | $L\toH$ | 1    | 0    | 1    | 1    |
| Write DQ18 to DQ26 | $L\toH$ | -       | 1    | 1    | 0    | 1    |
|                    | -       | $L\toH$ | 1    | 1    | 0    | 1    |
| Write DQ27 to DQ35 | $L\toH$ | -       | 1    | 1    | 1    | 0    |
|                    | Ι       | $L\toH$ | 1    | 1    | 1    | 0    |
| Write nothing      | $L\toH$ | _       | 1    | 1    | 1    | 1    |
|                    | _       | $L\toH$ | 1    | 1    | 1    | 1    |

**Remark** H : High level, L : Low level,  $\rightarrow$  : rising edge.

# Bus Cycle State Diagram



- **Remarks 1.** A0 is internally advanced in accordance with the burst order table. Bus cycle is terminated after burst count = 2.
  - 2. State machine control timing sequence is controlled by K.

## **Electrical Specifications**

## **Absolute Maximum Ratings**

| Parameter                     | Symbol | Conditions | MIN. | TYP. | MAX.                    | Unit |
|-------------------------------|--------|------------|------|------|-------------------------|------|
| Supply voltage                | Vdd    |            | -0.5 |      | +2.9                    | V    |
| Output supply voltage         | VddQ   |            | -0.5 |      | Vdd                     | V    |
| Input voltage                 | VIN    |            | -0.5 |      | Vdd + 0.5 (2.9 V MAX.)  | V    |
| Input / Output voltage        | VI/O   |            | -0.5 |      | VDDQ + 0.5 (2.9 V MAX.) | V    |
| Operating ambient temperature | TA     |            | 0    |      | 70                      | °C   |
| Storage temperature           | Tstg   |            | -55  |      | +125                    | °C   |

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

#### Recommended DC Operating Conditions (T<sub>A</sub> = 0 to 70 °C)

| Parameter                | Symbol | Conditions | MIN.       | TYP. | MAX.       | Unit | Note |
|--------------------------|--------|------------|------------|------|------------|------|------|
| Supply voltage           | Vdd    |            | 1.7        |      | 1.9        | V    |      |
| Output supply voltage    | VddQ   |            | 1.4        |      | Vdd        | V    |      |
| High level input voltage | Vін    |            | Vref + 0.1 |      | VDDQ + 0.3 | V    | 1    |
| Low level input voltage  | VIL    |            | -0.3       |      | Vref – 0.1 | V    | 1    |
| Clock input voltage      | VIN    |            | -0.3       |      | VDDQ + 0.3 | V    | 1    |
| Reference voltage        | VREF   |            | 0.68       |      | 0.95       | V    |      |

Note1 Overshoot: VIH (AC)  $\leq$  VDD + 0.7 V for t  $\leq$  TKHKH/2

Undershoot: VIL (AC)  $\geq -$  0.5V for t  $\leq$  TKHKH/2

Power-up: VIH  $\leq$  VDDQ + 0.3V and VDD  $\leq$  1.7V and VDDQ  $\leq$  1.4V for t  $\leq$  200 ms

During normal operation, VDDQ must not exceed VDD.

Control input signals may not have pulse widths less than TKHKL (MIN) or operate at cycle rates less than TKHKH (MIN).

#### Capacitance (T<sub>A</sub> = 25 °C, f = 1MHz)

| Parameter                  | Symbol | Test conditions | MIN. | TYP. | MAX. | Unit |
|----------------------------|--------|-----------------|------|------|------|------|
| Input capacitance          | CIN    | VIN = 0 V       |      | 4    | 5    | pF   |
| Input / Output capacitance | Cı/o   | VI/O = 0 V      |      | 6    | 7    | pF   |
| Clock Input capacitance    | Cclk   | Vclk = 0 V      |      | 5    | 6    | pF   |

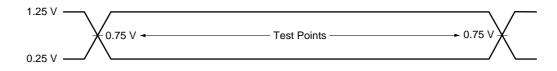
Remark These parameters are periodically sampled and not 100% tested.

# DC Characteristics (T<sub>A</sub> = 0 to 70°C, V<sub>DD</sub> = $1.8 \pm 0.1 \text{ V}$ )

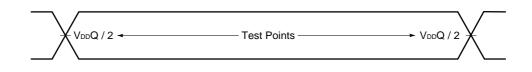
| Parameter                 | Symbol   | Test condition                                                   |      | MIN.          | TYP. | MA      | X.       | Unit | Note |
|---------------------------|----------|------------------------------------------------------------------|------|---------------|------|---------|----------|------|------|
|                           |          |                                                                  |      |               |      | x8, x18 | x36      |      |      |
| Input leakage current     | Iц       |                                                                  |      | -2            | _    | +       | 2        | μA   |      |
| I/O leakage current       | Ilo      |                                                                  |      | -2            | _    | +       | 2        | μA   |      |
| Operating supply current  | ldd      | $V \text{IN} \leq V \text{IL or } V \text{IN} \geq V \text{IH},$ | -E40 |               |      | 540     | 640      | mA   |      |
| (Read Write cycle)        |          | II/O = 0 mA                                                      | -E50 |               |      | 440     | 540      |      |      |
|                           |          | Cycle = MAX.                                                     | -E60 |               |      | 370     | 460      |      |      |
| Standby supply current    | ISB1     | $V \text{IN} \leq V \text{IL or } V \text{IN} \geq V \text{IH},$ | -E40 |               |      | 25      | 50       | mA   |      |
| (NOP)                     |          | II/O = 0 mA                                                      | -E50 |               |      | 21      | 10       |      |      |
|                           |          | Cycle = MAX.                                                     | -E60 |               |      | 19      | 90       |      |      |
| High level output voltage | VOH(Low) | Іон  ≤ 0.1 mA                                                    |      | VDDQ - 0.2    | _    | VDI     | DQ       | V    | 3, 4 |
|                           | Vон      | Note1                                                            |      | VDDQ/2 - 0.08 | _    | VDDQ/2  | 2 + 0.08 | V    | 3, 4 |
| Low level output voltage  | VOL(Low) | lo∟ ≤ 0.1 mA                                                     |      | Vss           | _    | 0.      | .2       | V    | 3, 4 |
|                           | Vol      | Note2                                                            |      | VDDQ/2 - 0.08 | _    | VDDQ/2  | 2 + 0.08 | V    | 3, 4 |

**Notes 1.** Outputs are impedance-controlled. | IOH | =  $(V_{DD}Q/2)/(RQ/5)$  for values of 175  $\Omega \le RQ \le 350 \Omega$ .

2. Outputs are impedance-controlled. IoL = (VDDQ/2)/(RQ/5) for values of 175  $\Omega \le RQ \le 350 \Omega$ .

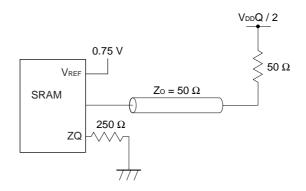

3. AC load current is higher than the shown DC values.

4. HSTL outputs meet JEDEC HSTL Class I and Class II standards.


AC Characteristics (T<sub>A</sub> = 0 to 70 °C,  $V_{DD}$  = 1.8 ± 0.1 V)

## **AC Test Conditions**

#### Input waveform (Rise / Fall time ≤ 0.3 ns)




#### Output waveform



#### Output load condition

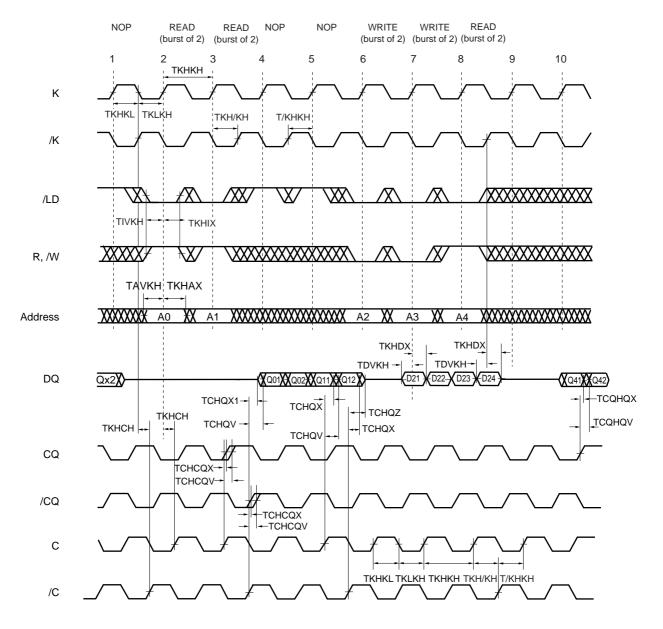
#### Figure 1. External load at test





\* \* \* \*

\* \*


# Read and Write Cycle

| Parameter                                                                                                                                                                                                            |                                                                                                                   | Symbol                                                                   | -E4                                                    |                                      | -E                                                     |                                            | -E6                                                 |                                | Unit                                         | Note             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|--------------------------------|----------------------------------------------|------------------|
|                                                                                                                                                                                                                      |                                                                                                                   |                                                                          | (250                                                   |                                      | (200                                                   | ,                                          | (167                                                |                                | _                                            |                  |
|                                                                                                                                                                                                                      |                                                                                                                   |                                                                          | MIN.                                                   | MAX.                                 | MIN.                                                   | MAX.                                       | MIN.                                                | MAX.                           |                                              |                  |
| Clock                                                                                                                                                                                                                |                                                                                                                   |                                                                          |                                                        | 1                                    | 1                                                      |                                            | 1                                                   | 1                              | -                                            |                  |
| Average Clock cycle                                                                                                                                                                                                  | time (K, /K, C, /C)                                                                                               | ТКНКН                                                                    | 4.0                                                    | 8.4                                  | 5.0                                                    | 8.4                                        | 6.0                                                 | 8.4                            | ns                                           | 1                |
| Clock phase jitter (K                                                                                                                                                                                                | , /K, C, /C)                                                                                                      | TKC var                                                                  | -                                                      | 0.2                                  | -                                                      | 0.2                                        | -                                                   | 0.2                            | ns                                           | 2                |
| Clock HIGH time (K,                                                                                                                                                                                                  | /K, C, /C)                                                                                                        | TKHKL                                                                    | 1.6                                                    | -                                    | 2.0                                                    | -                                          | 2.4                                                 | -                              | ns                                           |                  |
| Clock LOW time (K,                                                                                                                                                                                                   | /K, C, /C)                                                                                                        | TKLKH                                                                    | 1.6                                                    | -                                    | 2.0                                                    | -                                          | 2.4                                                 | -                              | ns                                           |                  |
| Clock to /clock (K→/                                                                                                                                                                                                 | K., C→/C.)                                                                                                        | TKH /KH                                                                  | 1.8                                                    | -                                    | 2.2                                                    | -                                          | 2.7                                                 | -                              | ns                                           |                  |
| Clock to /clock (/K $\rightarrow$                                                                                                                                                                                    | K., /C→C.)                                                                                                        | T /KHKH                                                                  | 1.8                                                    | -                                    | 2.2                                                    | -                                          | 2.7                                                 | -                              | ns                                           |                  |
| Clock to data clock                                                                                                                                                                                                  | 200 to 250 MHz                                                                                                    | ТКНСН                                                                    | 0                                                      | 1.8                                  | -                                                      | -                                          | -                                                   | -                              | ns                                           |                  |
| (K→C., /K→/C.)                                                                                                                                                                                                       | 167 to 200 MHz                                                                                                    |                                                                          | 0                                                      | 2.3                                  | 0                                                      | 2.3                                        | -                                                   | -                              | _                                            |                  |
|                                                                                                                                                                                                                      | 133 to 167 MHz                                                                                                    |                                                                          | 0                                                      | 2.8                                  | 0                                                      | 2.8                                        | 0                                                   | 2.8                            |                                              |                  |
|                                                                                                                                                                                                                      | < 133 MHz                                                                                                         |                                                                          | 0                                                      | 3.55                                 | 0                                                      | 3.55                                       | 0                                                   | 3.55                           |                                              |                  |
| DLL lock time (K, C)                                                                                                                                                                                                 |                                                                                                                   | TKC lock                                                                 | 1,024                                                  | -                                    | 1,024                                                  | -                                          | 1,024                                               | -                              | Cycle                                        | 3                |
| K static to DLL reset                                                                                                                                                                                                |                                                                                                                   | TKC reset                                                                | 30                                                     | -                                    | 30                                                     | -                                          | 30                                                  | _                              | ns                                           |                  |
|                                                                                                                                                                                                                      |                                                                                                                   | -                                                                        |                                                        |                                      |                                                        |                                            |                                                     |                                |                                              |                  |
| Output Times                                                                                                                                                                                                         |                                                                                                                   |                                                                          |                                                        |                                      |                                                        |                                            |                                                     |                                |                                              |                  |
| C, /C HIGH to outpu                                                                                                                                                                                                  | t valid                                                                                                           | TCHQV                                                                    | _                                                      | 0.45                                 | -                                                      | 0.45                                       | -                                                   | 0.5                            | ns                                           |                  |
| C, /C HIGH to outpu                                                                                                                                                                                                  | t hold                                                                                                            | TCHQX                                                                    | -0.45                                                  | -                                    | -0.45                                                  | -                                          | -0.5                                                | -                              | ns                                           |                  |
| C. /C HIGH to echo clock valid                                                                                                                                                                                       |                                                                                                                   |                                                                          |                                                        |                                      |                                                        |                                            |                                                     |                                |                                              |                  |
| C, /C HIGH to echo                                                                                                                                                                                                   | clock valid                                                                                                       | TCHCQV                                                                   | -                                                      | 0.45                                 | -                                                      | 0.45                                       | -                                                   | 0.5                            | ns                                           |                  |
| C, /C HIGH to echo                                                                                                                                                                                                   |                                                                                                                   | TCHCQV<br>TCHCQX                                                         | -0.45                                                  | 0.45                                 | _<br>_0.45                                             | 0.45<br>-                                  | _<br>_0.5                                           | 0.5                            | ns<br>ns                                     |                  |
| -,                                                                                                                                                                                                                   | clock hold                                                                                                        |                                                                          |                                                        |                                      |                                                        |                                            |                                                     |                                | -                                            | 4                |
| C, /C HIGH to echo                                                                                                                                                                                                   | clock hold<br>htput valid                                                                                         | TCHCQX                                                                   | -0.45                                                  | _                                    | -0.45                                                  | -                                          | -0.5                                                | -                              | ns                                           | 4                |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou                                                                                                                                                                             | clock hold<br>Itput valid<br>Itput hold                                                                           | TCHCQX<br>TCQHQV                                                         | -0.45<br>-                                             | -<br>0.3                             | -0.45<br>-                                             | -<br>0.35                                  | -0.5<br>-                                           | - 0.4                          | ns<br>ns                                     |                  |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou                                                                                                                                                       | clock hold<br>tput valid<br>tput hold<br>gh-Z                                                                     | TCHCQX<br>TCQHQV<br>TCQHQX                                               | -0.45<br>-<br>-0.3                                     | -<br>0.3<br>-                        | -0.45<br>-<br>-0.35                                    | -<br>0.35<br>-                             | -0.5<br>-<br>-0.4                                   | _<br>0.4<br>_                  | ns<br>ns<br>ns                               |                  |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi                                                                                                                                | clock hold<br>tput valid<br>tput hold<br>gh-Z                                                                     | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ                                      | -0.45<br>-<br>-0.3<br>-                                | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-                               | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-                              | -<br>0.4<br>-<br>0.5           | ns<br>ns<br>ns<br>ns                         |                  |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi                                                                                                                                | clock hold<br>tput valid<br>tput hold<br>gh-Z                                                                     | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ                                      | -0.45<br>-<br>-0.3<br>-                                | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-                               | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-                              | -<br>0.4<br>-<br>0.5           | ns<br>ns<br>ns<br>ns                         |                  |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi<br>C HIGH to output Lo                                                                                                         | clock hold<br>tput valid<br>tput hold<br>gh-Z<br>w-Z                                                              | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ                                      | -0.45<br>-<br>-0.3<br>-                                | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-                               | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-                              | -<br>0.4<br>-<br>0.5           | ns<br>ns<br>ns<br>ns                         |                  |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi<br>C HIGH to output LC<br>Setup Times                                                                                          | clock hold<br>ttput valid<br>ttput hold<br>gh-Z<br>w-Z<br>sing edge                                               | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ<br>TCHQX1                            | -0.45<br>-<br>-0.3<br>-<br>-0.45                       | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-<br>-0.45                      | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-<br>-0.5                      | _<br>0.4<br>_<br>0.5<br>_      | ns<br>ns<br>ns<br>ns                         | 4                |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi<br>C HIGH to output Lc<br>Setup Times<br>Address valid to K ri                                                                 | clock hold<br>itput valid<br>itput hold<br>gh-Z<br>w-Z<br>sing edge<br>so K rising edge                           | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ<br>TCHQX1<br>TAVKH                   | -0.45<br>-<br>-0.3<br>-<br>-0.45<br>0.5                | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-<br>-0.45<br>0.6               | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-<br>0.5                       | _<br>0.4<br>_<br>0.5<br>_      | ns<br>ns<br>ns<br>ns<br>ns<br>ns             | 4                |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi<br>C HIGH to output Lo<br>Setup Times<br>Address valid to K ri<br>Control inputs valid                                         | clock hold<br>itput valid<br>itput hold<br>gh-Z<br>w-Z<br>sing edge<br>so K rising edge                           | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ<br>TCHQX1<br>TCHQX1                  | -0.45<br>-<br>-0.3<br>-<br>-0.45<br>0.5<br>0.5         | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-<br>-0.45<br>0.6<br>0.6        | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-<br>-0.5<br>0.7<br>0.7        | -<br>0.4<br>-<br>0.5<br>-      | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns | 4                |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi<br>C HIGH to output Lc<br>Setup Times<br>Address valid to K ri<br>Control inputs valid to<br>Data-in valid to K, /K            | clock hold<br>itput valid<br>itput hold<br>gh-Z<br>w-Z<br>sing edge<br>so K rising edge                           | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ<br>TCHQX1<br>TCHQX1                  | -0.45<br>-<br>-0.3<br>-<br>-0.45<br>0.5<br>0.5         | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-<br>-0.45<br>0.6<br>0.6        | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-<br>-0.5<br>0.7<br>0.7        | -<br>0.4<br>-<br>0.5<br>-      | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns | 4                |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi<br>C HIGH to output LC<br>Setup Times<br>Address valid to K ri<br>Control inputs valid<br>Data-in valid to K, /K<br>Hold Times | clock hold<br>itput valid<br>itput hold<br>gh-Z<br>w-Z<br>sing edge<br>so K rising edge<br>f rising edge          | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ<br>TCHQX1<br>TAVKH<br>TIVKH<br>TDVKH | -0.45<br>-<br>-0.3<br>-<br>-0.45<br>0.5<br>0.5<br>0.35 | -<br>0.3<br>-<br>0.45                | -0.45<br>-<br>-0.35<br>-<br>-0.45<br>0.6<br>0.6<br>0.4 | -<br>0.35<br>-<br>0.45                     | -0.5<br>-<br>-0.4<br>-<br>-0.5<br>0.7<br>0.7<br>0.5 | -<br>0.4<br>-<br>0.5<br>-      | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns | 4<br>5<br>5<br>5 |
| C, /C HIGH to echo<br>CQ, /CQ HIGH to ou<br>CQ, /CQ HIGH to ou<br>C HIGH to output Hi<br>C HIGH to output Lc<br>Setup Times<br>Address valid to K ri<br>Control inputs valid to<br>Data-in valid to K, /K            | clock hold<br>itput valid<br>itput hold<br>gh-Z<br>w-Z<br>sing edge<br>sing edge<br>co K rising edge<br>ress hold | TCHCQX<br>TCQHQV<br>TCQHQX<br>TCHQZ<br>TCHQX1<br>TCHQX1                  | -0.45<br>-<br>-0.3<br>-<br>-0.45<br>0.5<br>0.5         | -<br>0.3<br>-<br>0.45<br>-<br>-<br>- | -0.45<br>-<br>-0.35<br>-<br>-0.45<br>0.6<br>0.6        | -<br>0.35<br>-<br>0.45<br>-<br>-<br>-<br>- | -0.5<br>-<br>-0.4<br>-<br>-0.5<br>0.7<br>0.7        | -<br>0.4<br>-<br>0.5<br>-<br>- | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns | 4                |



- Notes 1. The device will operate at clock frequencies slower than TKHKH(MAX.).
  - 2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
  - VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.
    DLL lock time begins once VDD and input clock are stable.
    It is recommended that the device is kept inactive during these cycles.
  - **4.** Echo clock is very tightly controlled to data valid / data hold. By design, there is a ± 0.1 ns variation from echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.
  - **5.** This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.
- **Remarks 1.** This parameter is sampled.
  - **2.** Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
  - 3. Control input signals may not be operated with pulse widths less than TKHKL (MIN).
  - 4. If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.
  - **5.** VDDQ is 1.5 VDC.

#### **Read and Write Timing**



**Remarks 1.** Q01 refers to output from address A0.

Q02 refers to output from the next internal burst address following A0, etc.

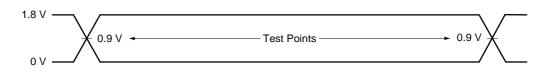
- 2. Outputs are disable (high impedance) one clock cycle after a NOP.
- **3.** The second NOP cycle is not necessary for correct device operation;

however, at high clock frequencies it may be required to prevent bus contention.

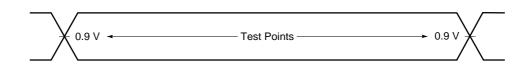
# **JTAG Specification**

These products support a limited set of JTAG functions as in IEEE standard 1149.1.

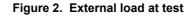
#### Test Access Port (TAP) Pins

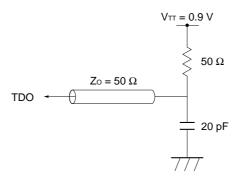

| Pin name | Pin assignments | Description                                                                                                                                                                                                                                                             |  |  |  |  |  |
|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| тск      | 2R              | Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.                                                                                                                                              |  |  |  |  |  |
| TMS      | 10R             | Test Mode Select. This is the command input for the TAP controller state machine.                                                                                                                                                                                       |  |  |  |  |  |
| TDI      | 11R             | Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction. |  |  |  |  |  |
| TDO      | 1R              | Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.                                                                                                                    |  |  |  |  |  |

**Remark** The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.


| Parameter                  | Symbol | Conditions                                       | MIN. | TYP. | MAX.      | Unit | Note |
|----------------------------|--------|--------------------------------------------------|------|------|-----------|------|------|
| JTAG Input leakage current | Iц     | $0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}}$    | -5.0 | Ι    | +5.0      | μA   |      |
| JTAG I/O leakage current   | Ilo    | $0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}} Q,$ | -5.0 | -    | +5.0      | μA   |      |
|                            |        | Outputs disabled                                 |      |      |           |      |      |
| JTAG input high voltage    | Vін    |                                                  | 1.3  | -    | VDD + 0.3 | V    |      |
| JTAG input low voltage     | VIL    |                                                  | -0.3 | -    | +0.5      | V    |      |
| JTAG output high voltage   | Voh1   | Іонс   = 100 µА                                  | 1.6  | -    | _         | V    |      |
|                            | Voh2   | Іонт   <b>= 2 mA</b>                             | 1.4  | -    | _         | V    |      |
| JTAG output low voltage    | Vol1   | IOLC = 100 μA                                    | -    | -    | 0.2       | V    |      |
|                            | Vol2   | IOLT = 2 mA                                      | _    | _    | 0.4       | V    |      |

#### **JTAG AC Test Conditions**

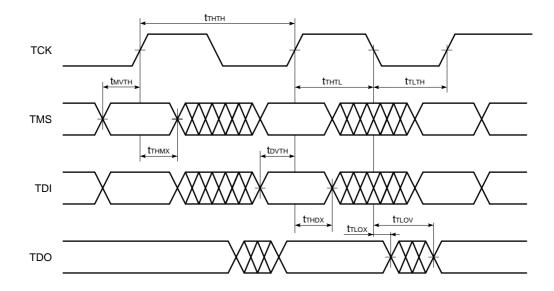

# Input waveform (Rise / Fall time ≤ 1 ns)




Output waveform



## Output load






# JTAG AC Characteristics (T<sub>A</sub> = 0 to 70 °C)

| Parameter               | Symbol        | Conditions | MIN. | TYP. | MAX. | Unit | Note |
|-------------------------|---------------|------------|------|------|------|------|------|
| Clock                   |               |            |      |      |      |      |      |
| Clock cycle time        | tтнтн         |            | 100  | _    | _    | ns   |      |
| Clock frequency         | f⊤⊧           |            | -    | _    | 10   | MHz  |      |
| Clock high time         | tтнт∟         |            | 40   | _    | -    | ns   |      |
| Clock low time          | tтьтн         |            | 40   | -    | -    | ns   |      |
| Output time             | 1             |            |      |      |      |      |      |
| TCK low to TDO unknown  | <b>t</b> ⊤LOX |            | 0    | -    | -    | ns   |      |
| TCK low to TDO valid    | ttlov         |            | _    | -    | 20   | ns   |      |
| TDI valid to TCK high   | tdvth         |            | 10   | _    | -    | ns   |      |
| TCK high to TDI invalid | tтнох         |            | 10   | -    | -    | ns   |      |
| Setup time              | 1             |            |      |      |      |      |      |
| TMS setup time          | tмvтн         |            | 10   | -    | -    | ns   |      |
| Capture setup time      | tcs           |            | 10   | -    | -    | ns   |      |
| Hold time               | 1             |            |      |      |      |      |      |
| TMS hold time           | <b>t</b> тнмх |            | 10   | _    | _    | ns   |      |
| Capture hold time       | tсн           |            | 10   | _    | _    | ns   |      |

# JTAG Timing Diagram



 $\star$ 

## Scan Register Definition (1)

| Register name        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction register | The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.                                                                                                                                                                                                                |
| Bypass register      | The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.                                                                                                                                                                                                                                                                                                                                                                                                |
| ID register          | The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.                                                                                                                                                                                                                                                                                                |
| Boundary register    | The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register.<br>The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number. |

# Scan Register Definition (2)

| Register name        | Bit size | Unit |
|----------------------|----------|------|
| Instruction register | 3        | bit  |
| Bypass register      | 1        | bit  |
| ID register          | 32       | bit  |
| Boundary register    | 107      | bit  |

# **ID Register Definition**

| Part number | Organization | ID [31:28] vendor revision no. | ID [27:12] part no. | ID [11:1] vendor ID no. | ID [0] fix bit |
|-------------|--------------|--------------------------------|---------------------|-------------------------|----------------|
| µPD44164082 | 2M x 8       | XXXX                           | 0000 0000 0001 0010 | 0000010000              | 1              |
| µPD44164182 | 1M x 18      | XXXX                           | 0000 0000 0001 0011 | 0000010000              | 1              |
| µPD44164362 | 512K x 36    | XXXX                           | 0000 0000 0001 0100 | 0000010000              | 1              |

#### ★ SCAN Exit Order

NEC

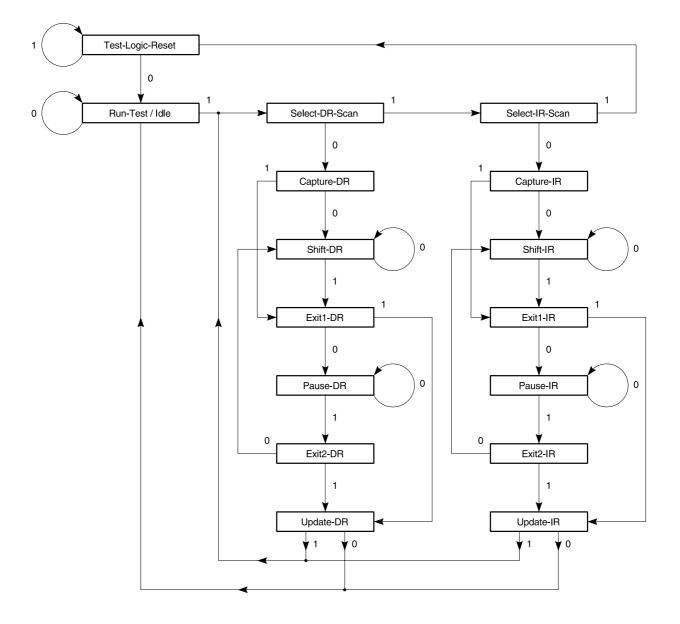
| Bit | Signal name |     |      | Bump |
|-----|-------------|-----|------|------|
| no. | x8 x18 x36  |     |      | ID   |
| 1   | /C          |     |      | 6R   |
| 2   |             | С   |      | 6P   |
| 3   |             | А   |      | 6N   |
| 4   |             | А   |      | 7P   |
| 5   |             | А   |      | 7N   |
| 6   |             | А   |      | 7R   |
| 7   |             | А   |      | 8R   |
| 8   |             | А   |      | 8P   |
| 9   |             | А   | -    | 9R   |
| 10  | NC          | DQ0 | DQ0  | 11P  |
| 11  | NC          | NC  | DQ9  | 10P  |
| 12  | NC          | NC  | NC   | 10N  |
| 13  | NC          | NC  | NC   | 9P   |
| 14  | NC          | DQ1 | DQ11 | 10M  |
| 15  | NC          | NC  | DQ10 | 11N  |
| 16  | NC          | NC  | NC   | 9M   |
| 17  | NC          | NC  | NC   | 9N   |
| 18  | DQ0         | DQ2 | DQ2  | 11L  |
| 19  | NC          | NC  | DQ1  | 11M  |
| 20  | NC          | NC  | NC   | 9L   |
| 21  | NC          | NC  | NC   | 10L  |
| 22  | NC          | DQ3 | DQ3  | 11K  |
| 23  | NC          | NC  | DQ12 | 10K  |
| 24  | NC          | NC  | NC   | 9J   |
| 25  | NC          | NC  | NC   | 9K   |
| 26  | DQ1         | DQ4 | DQ13 | 10J  |
| 27  | NC          | NC  | DQ4  | 11J  |
| 28  |             | ZQ  |      | 11H  |
| 29  | NC          | NC  | NC   | 10G  |
| 30  | NC          | NC  | NC   | 9G   |
| 31  | NC          | DQ5 | DQ5  | 11F  |
| 32  | NC          | NC  | DQ14 | 11G  |
| 33  | NC          | NC  | NC   | 9F   |
| 34  | NC          | NC  | NC   | 10F  |
| 35  | DQ2         | DQ6 | DQ6  | 11E  |
| 36  | NC          | NC  | DQ15 | 10E  |

| Bit | Sig            | Bump     |      |          |
|-----|----------------|----------|------|----------|
| no. | x8 x18 x36     |          |      | ID       |
| 37  | NC NC NC       |          | 10D  |          |
| 38  | NC             | NC       | NC   | 9E       |
| 39  | NC             | DQ7      | DQ17 | 10C      |
| 40  | NC             | NC       | DQ16 | 11D      |
| 41  | NC             | NC       | NC   | 9C       |
| 42  | NC             | NC       | NC   | 9D       |
| 43  | DQ3            | DQ8      | DQ8  | 11B      |
| 44  | NC             | NC       | DQ7  | 11C      |
| 45  | NC             | NC       | NC   | 9B       |
| 46  | NC             | NC       | NC   | 10B      |
| 47  |                | CQ       |      | 11A      |
| 48  |                | _        |      | Internal |
| 49  |                | А        |      | 9A       |
| 50  |                | А        |      | 8B       |
| 51  |                | А        |      | 7C       |
| 52  | A A0 A0        |          | 6C   |          |
| 53  | /LD            |          |      | 8A       |
| 54  | NC             | NC /BW1  |      | 7A       |
| 55  | /NW0 /BW0 /BW0 |          | 7B   |          |
| 56  | к              |          |      | 6B       |
| 57  |                | /K       |      | 6A       |
| 58  | NC             | NC       | /BW3 | 5B       |
| 59  | /NW1           | /BW1     | /BW2 | 5A       |
| 60  |                | R, /W    |      | 4A       |
| 61  |                | А        |      | 5C       |
| 62  | A              |          |      | 4B       |
| 63  | A A NC         |          | ЗA   |          |
| 64  | /DLL           |          |      | 1H       |
| 65  | /CQ            |          |      | 1A       |
| 66  | NC             | DQ9 DQ27 |      | 2B       |
| 67  | NC             |          |      | 3B       |
| 68  | NC             | NC NC    |      | 1C       |
| 69  | NC             | NC       | NC   | 1B       |
| 70  | NC             | DQ10     | DQ19 | 3D       |
| 71  | NC             | NC       | DQ28 | 3C       |
| 72  | NC NC NC       |          |      | 1D       |

| Bit | S                         | Bump |      |          |
|-----|---------------------------|------|------|----------|
| no. | Signal name<br>x8 x18 x36 |      |      | ID       |
| 73  |                           |      | NC   | 2C       |
| 74  |                           |      | DQ20 | 20<br>3E |
| 75  | NC                        | NC   | DQ29 | 2D       |
| 76  | NC                        | NC   | NC   | 2E       |
| 77  | NC                        | NC   | NC   | 1E       |
| 78  | NC                        | DQ12 | DQ30 | 2F       |
| 79  | NC                        | NC   | DQ21 | 3F       |
| 80  | NC                        | NC   | NC   | 1G       |
| 81  | NC                        | NC   | NC   | 1F       |
| 82  | DQ5                       | DQ13 | DQ22 | 3G       |
| 83  | NC                        | NC   | DQ31 | 2G       |
| 84  | NC                        | NC   | NC   | 1J       |
| 85  | NC                        | NC   | NC   | 2J       |
| 86  | NC                        | DQ14 | DQ23 | ЗK       |
| 87  | NC NC DQ32                |      | 3J   |          |
| 88  | NC NC NC                  |      | NC   | 2K       |
| 89  | NC NC N                   |      | NC   | 1K       |
| 90  | DQ6 DQ15 [                |      | DQ33 | 2L       |
| 91  | NC NC E                   |      | DQ24 | 3L       |
| 92  | NC                        | NC   | NC   | 1M       |
| 93  | NC                        | NC   | NC   | 1L       |
| 94  | NC                        | DQ16 | DQ25 | 3N       |
| 95  | NC                        | NC   | DQ34 | 3M       |
| 96  | NC                        | NC   | NC   | 1N       |
| 97  | NC                        | NC   | NC   | 2M       |
| 98  | DQ7                       | DQ17 | DQ26 | 3P       |
| 99  | NC NC D                   |      | DQ35 | 2N       |
| 100 | NC NC NC                  |      | NC   | 2P       |
| 101 | NC                        | 1P   |      |          |
| 102 |                           | 3R   |      |          |
| 103 |                           | 4R   |      |          |
| 104 |                           | 4P   |      |          |
| 105 |                           | 5P   |      |          |
| 106 |                           | 5N   |      |          |
| 107 |                           | 5R   |      |          |

#### **JTAG Instructions**

|                                                                                                   | Instructions                                                                                     | Description                                                                                                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| *                                                                                                 | EXTEST                                                                                           | The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-             |  |  |  |  |
|                                                                                                   |                                                                                                  | scan register cells at output pins are used to apply test vectors, while those at input pins capture test     |  |  |  |  |
|                                                                                                   |                                                                                                  | results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the |  |  |  |  |
|                                                                                                   |                                                                                                  | boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,             |  |  |  |  |
|                                                                                                   |                                                                                                  | the output driver is turned on and the PRELOAD data is driven onto the output pins.                           |  |  |  |  |
|                                                                                                   | IDCODE                                                                                           | The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in          |  |  |  |  |
|                                                                                                   |                                                                                                  | capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The                 |  |  |  |  |
|                                                                                                   |                                                                                                  | IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed     |  |  |  |  |
|                                                                                                   |                                                                                                  | in the test-logic-reset state.                                                                                |  |  |  |  |
| BYPASS The BYPASS instruction is loaded in the instruction register when the bypass register is p |                                                                                                  |                                                                                                               |  |  |  |  |
|                                                                                                   | TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the |                                                                                                               |  |  |  |  |
|                                                                                                   | board level scan path to be shortened to facilitate testing of other devices in the scan path.   |                                                                                                               |  |  |  |  |
| *                                                                                                 | SAMPLE / PRELOAD                                                                                 | SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /                         |  |  |  |  |
|                                                                                                   | PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the ca |                                                                                                               |  |  |  |  |
|                                                                                                   |                                                                                                  | state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the RAM           |  |  |  |  |
|                                                                                                   |                                                                                                  | clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the        |  |  |  |  |
|                                                                                                   |                                                                                                  | I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing  |  |  |  |  |
|                                                                                                   |                                                                                                  | the TAP to sample metastable input will not harm the device, repeatable results cannot be expected.           |  |  |  |  |
|                                                                                                   |                                                                                                  | RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus           |  |  |  |  |
|                                                                                                   |                                                                                                  | hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except         |  |  |  |  |
|                                                                                                   |                                                                                                  | capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state      |  |  |  |  |
|                                                                                                   |                                                                                                  | then places the boundary scan register between the TDI and TDO pins.                                          |  |  |  |  |
| *                                                                                                 | SAMPLE-Z                                                                                         | If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an           |  |  |  |  |
|                                                                                                   |                                                                                                  | inactive drive state (high impedance) and the boundary register is connected between TDI and TDO              |  |  |  |  |
|                                                                                                   |                                                                                                  | when the TAP controller is moved to the shift-DR state.                                                       |  |  |  |  |
|                                                                                                   | •                                                                                                |                                                                                                               |  |  |  |  |


# **JTAG Instruction Coding**

|   | IR2 | IR1 | IR0 | Instruction      | Note |
|---|-----|-----|-----|------------------|------|
| * | 0   | 0   | 0   | EXTEST           |      |
|   | 0   | 0   | 1   | IDCODE           |      |
|   | 0   | 1   | 0   | SAMPLE-Z         | 1    |
|   | 0   | 1   | 1   | RESERVED         |      |
| * | 1   | 0   | 0   | SAMPLE / PRELOAD |      |
|   | 1   | 0   | 1   | RESERVED         |      |
|   | 1   | 1   | 0   | RESERVED         |      |
|   | 1   | 1   | 1   | BYPASS           |      |

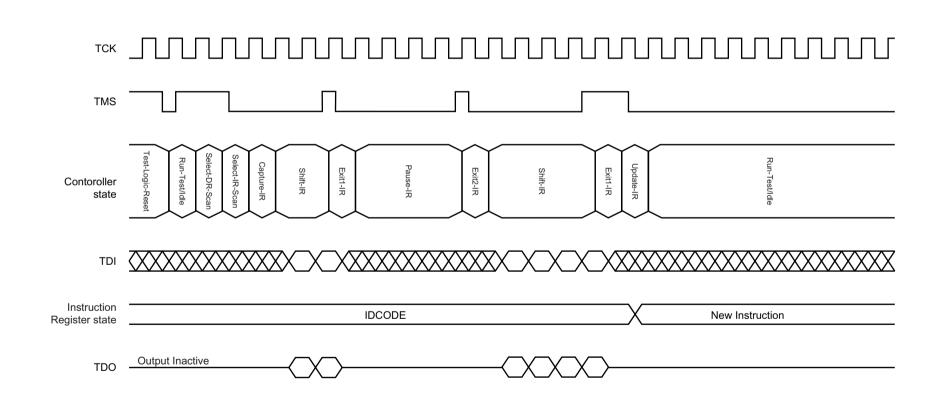
★ Note 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.



## TAP Controller State Diagram

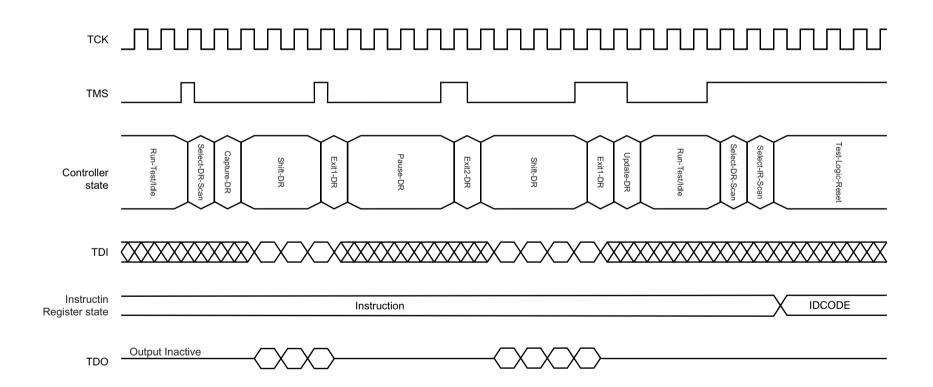


#### **Disabling the Test Access Port**


It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.

TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to VDD through a 1 k $\Omega$  resistor.

TDO should be left unconnected.


#### **Test Logic Operation (Instruction Scan)**

24



μΡD44164082, 44164182, 44164362

Test Logic (Data Scan)



b

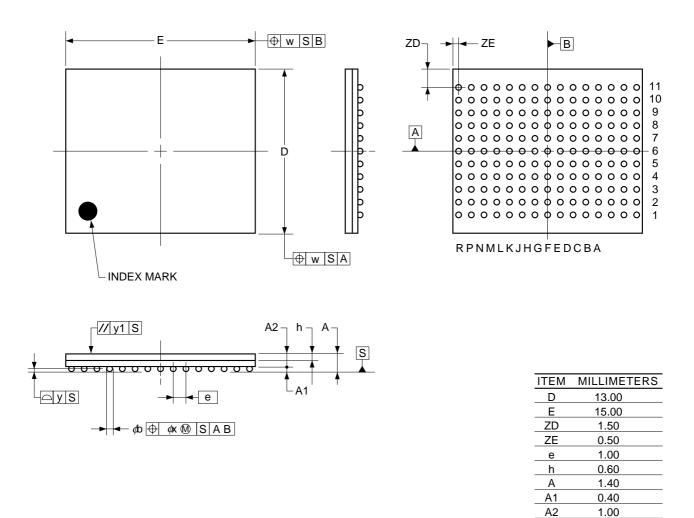
y

Х

w

y1

0.50 0.08


0.08

0.15

0.20

# Package Drawing

# 165-PIN PLASTIC FBGA (13x15)



This package drawing is a preliminary version. It may be changed in the future.



## **Recommended Soldering Condition**

Please consult with our sales offices for soldering conditions of these products.

#### **Types of Surface Mount Devices**

 $\mu$ PD44164082F5-EQ1: 165-pin PLASTIC FBGA (13 x 15)  $\mu$ PD44164182F5-EQ1: 165-pin PLASTIC FBGA (13 x 15)  $\mu$ PD44164362F5-EQ1: 165-pin PLASTIC FBGA (13 x 15)

## **Revision History**

| Edition/     | Pa      | ige      | Type of      | Location                     | Description                                    |                                     |
|--------------|---------|----------|--------------|------------------------------|------------------------------------------------|-------------------------------------|
| Date         | This    | Previous | revision     |                              | (Previous edition $\rightarrow$ This edition)  |                                     |
|              | edition | edition  |              |                              |                                                |                                     |
| 4th edition/ | p.6     | p.6      | Modification | Pin Identification           | ZQ pin                                         |                                     |
| June 2003    | p.14    | p.14     | Modification | Read and Write Cycle         | -E40, -E50 (TCHQV, TCHCQV, TCHQZ (MAX.)):      |                                     |
|              |         |          |              |                              | $0.5 \text{ ns} \rightarrow 0.45 \text{ ns}$   |                                     |
|              |         |          |              |                              | -E40, -E50 (TCHQX, TCHCQX, TCHCQX1 (MIN.)):    |                                     |
|              |         |          |              |                              | $-0.5 \text{ ns} \rightarrow -0.45 \text{ ns}$ |                                     |
|              | p.20    | p.20     | Modification | Scan Register Definition (1) | Boundary register                              |                                     |
|              | p.21    | p.21     | Modification | SCAN Exit Order              | Bit no. 48                                     | Signal name: Vss $\rightarrow$ –    |
|              |         |          |              |                              |                                                | Bump ID: 10A $\rightarrow$ Internal |
|              |         |          |              |                              | Bit no. 64 Signal name: Vss $\rightarrow$ /DLL |                                     |
|              |         |          |              |                              |                                                | Bump ID: $2A \rightarrow 1H$        |
|              | p.22    | p.22     | Modification | JTAG Instructions            | EXTEST, SAMPLE / PRELOAD and SAMPLE-Z          |                                     |
|              |         |          | Deletion     | JTAG Instruction Coding      | EXTEST Note                                    |                                     |
|              |         |          | Modification |                              | SAMPLE / PRELOAD                               |                                     |
|              |         |          |              |                              | Note 1                                         |                                     |

[MEMO]

[MEMO]

#### NOTES FOR CMOS DEVICES —

# **①** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

#### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

# ② HANDLING OF UNUSED INPUT PINS FOR CMOS

#### Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

#### Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of June, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

#### (Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).